$y = 2|\chi|$ Hal $y = |2\chi|$

Name: _____

Transformations Review

RULES FOR TRANSFORMATIONS OF FUNCTIONS If $f(x)$ is the original function, $a > 0$ and $c > 0$:		
Function	Transformation of the graph of $f(x)$	
f(x)+c	Shift $f(x)$ upward <i>c</i> units	
f(x)-c	Shift $f(x)$ downward <i>c</i> units	
f(x+c)	Shift $f(x)$ to the left <i>c</i> units	
f(x-c)	Shift $f(x)$ to the right c units	
-f(x)	Reflect $f(x)$ in the x-axis	
f(-x)	Reflect $f(x)$ in the y-axis	
$a \cdot f(x), a > 1$	Stretch $f(x)$ vertically by a factor of a .	
$a \cdot f(x), \ 0 < a < 1$	Shrink $f(x)$ vertically by a factor of a .	
f(ax), a > 1	Shrink $f(x)$ horizontally by a factor of $\frac{1}{a}$.	
$f(ax), \ 0 < a < 1$	Stretch $f(x)$ horizontally by a factor of $\frac{1}{a}$.	

Ex: List the transformations of f(x) for each of the following functions.

g(x) = 2f(x) Vertical Stretch by factor of 2	h(x) = f(x - 3) Right 3	$j(x) = f\left(\frac{1}{3}x\right)$ Horizontal Stretch by a factor 3
k(x) = f(-x) Reflect over Y	$m(x) = f(x) - 3$ $\mathcal{D}own \mathcal{J}$	n(x) = f(x+3) + 3 Left up 3 3

Order of Transformations:

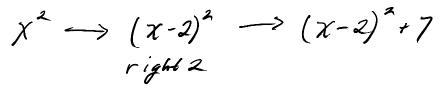
Does the order of transformations matter?

- 1. Start with the function $f(x) = x^2$
 - a. Shift up 7 units, then right 2 units.

$$f(x) = x^{2} \longrightarrow x^{2} + 7 \longrightarrow (x - 2)^{2} + 7$$

$$up 7 \qquad right 2$$

b. Shift right 2 units, then up 7.



c. Do parts (a) and (b) give the same equation?

2. Start with the function f(x) = √x
a. Stretch vertically by a factor of 2, then shift downward 5 units.

$$f(x) = Tx \longrightarrow g(x) = 2Tx \longrightarrow h(x) = 2Tx - 5/$$

stretch by Down 5
2

7

b. Shift downward 5 units, then stretch vertically by a factor of 2.

$$\begin{aligned}
& \sqrt{\chi} \to \sqrt{\chi} - 5 \longrightarrow 2(\sqrt{\chi} - 5) = 2\sqrt{\chi} - 10 \\
& Down 5 & Stretch \\
& y 2
\end{aligned}$$

c. Do parts (a) and (b) give the same equation

No

When does order matter?

- when there are multiple Vertical Horizontal movements

What order should be use?

Order of Operations (1) Horizontal Shifts (2) Stretch or Compress 3 Reflections) Vertical Shift

b(x+c)a.f vertical Stretch Compress

For each of the following, list the parent function, the transformations, and the "new origin". Then graph the eguation (HINT: It might below or aph the Parent Function) Then determine the domain & range

7) $y = 3(x-2)^2 + 3$ 8) $y = -4\sqrt{x+2} - 1$ 9) y = -|x+2| - 5PF: X $_{\rm PF:}$ $|\chi|$ PF: 1X

10) $y = -\frac{1}{2}x^3 + 1$ PF: χ^3

Transformations:

Transformations:

Transformations:

Kight 2

Left 2

Left 2

Reflect

Down 5

Transformations:

Vertical Compress by -Reflect over x UP 1

Up

Vert Stretch 3 V. Stretch Keflect x Down 1

New Origin: (2,3)

(-2, -1)

New Origin: _____ New Origin: (-2, -5) New Origin: (0, 1)

Write the equation of each parent function given the certain conditions. (

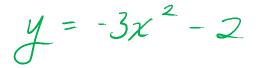
11) Absolute Value: Compression of $\frac{3}{4}$, shifted up 4 units, shifted left 3 units.

$$y = \frac{3}{4} |x+3| + 4$$

12) Cubic: Shifted 3 down, shifted 1 left, and reflected across the x-axis.

$$y = -(x+1)^{3} - 3$$

13) Quadratic: Reflected across x-axis, stretch of 3, shifted down 2.



14) Exponential: Shifted 6 right, 7 up and stretch of 5.

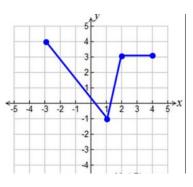
$$y = 5 \cdot 2^{x-6} + 7$$

15) Square root: Compression of $\frac{5}{7}$, shifted right 4, shifted up 1

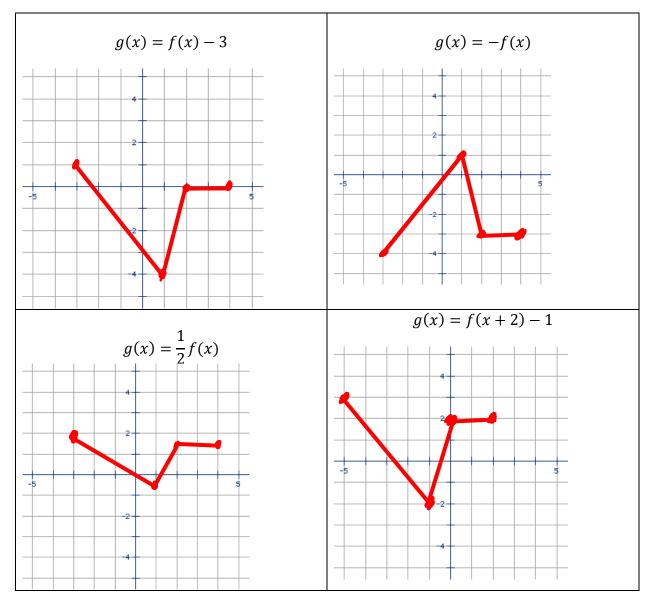
$$y = \frac{5}{7} x - y + 1$$

Practice:

Given: f(x)



Graph the following:



Consider the graph of $y = (x + 5)^2 + 1$ Make one change in the original equation of f(x) so that the graph:

a. Opens downward.

b. Is fatter (compressed).

 $= -(\chi + 5)^{2} + ($ c. Has *x*-intercepts.

 $y = \frac{1}{2}(x+5)^{2} + 1$

d. Is moved to the lett.

 $y = \frac{1}{2}(x+6) + 1$

Given the function: $f(x) = (x + 3)^2 + 5$

Write the function that:

a) Shifts $f(x) = (\mathcal{X} - 7)^2 + 5^2$

b) Shifts f(x) 5 units down

 $f(x) = (x+3)^2$

c) Reflects over y axis

$$g(x) = (-x + 3)^2 + 5$$

d) Stretches by a factor of 2

 $q(x) = 2(x+3)^{2} + 5$